Razonamiento estadístico, razonamiento condicional y conocimientos previos en estadística; evaluación y covariación

Autores

  • Juan Gerardo Martínez-Borrayo Universidad de Guadalajara https://orcid.org/0009-0002-3573-3039
  • Luis Alfredo Mayoral Gutiérrez Universidad de Gudalajara

DOI:

https://doi.org/10.32870/dse.v0i32.1597

Resumo

La enseñanza de matemáticas debe fomentar el razonamiento lógico, especialmente en estadística, donde se destacan conceptos como pensamiento y razonamiento estadístico. Aun cuando la definición de Garfield y Chance (2000) es la más aceptada, siguen existiendo diversas definiciones de razonamiento estadístico, sin un consenso claro sobre su significado y evaluación. El objetivo del presente estudio fue explorar la relación y evaluación de este concepto junto con el razonamiento condicional evaluado con la tarea conocida de Watson (1968), en su versión abstracta y concreta, controlando además el conocimiento previo en estadística. La investigación tuvo un diseño cuasi experimental con medidas cuantitativas para las tres variables de interés; razonamiento estadístico, conocimiento previo en estadística y razonamiento condicional, las ejecuciones se evaluaron tomando como base la taxonomía SOLO de Biggs y Collins (1982, 1989). Los resultados revelaron un bajo desempeño en las tres variables de interés. Se encontró una correlación positiva entre razonamiento abstracto e intermedio, y una correlación negativa entre conocimientos en estadística y razonamiento abstracto.

Downloads

Não há dados estatísticos.

Biografia do Autor

Juan Gerardo Martínez-Borrayo, Universidad de Guadalajara

Doctor en Neurociencias. Líneas de Investigación: procesos cognoscitivos y de aprendizaje; neuroeducación. Profesor-investigador, Departamento de Neurociencias, Universidad de Guadalajara. México.

Luis Alfredo Mayoral Gutiérrez, Universidad de Gudalajara

Doctor en Educación. Líneas de Investigación: procesos cognoscitivos y de aprendizaje. Profesor-investigador, Departamento de Estudios en Educación, Universidad de Guadalajara. México.

Referências

Adolphs, R.; D. Tranel; A. Bechara; H. Damasio; A. Damasio (1996). Neuropsychological Approaches to Reasoning and Decision-Making. In Neurobiology of Decision-Making. Germany: Springer-Berlin-Heidelberg, 157-179.

Al-Labadi, L.; Z. Baskurt; M. Evans (2018). Statistical Reasoning: Choosing and Checking the Ingredients, Inferences Based on a Measure of Statistical Evidence with some Applications. Entropy, 20(4), 289. https://www.mdpi.com/1099-4300/20/4/289

Ausubel, D.; J. Novak; H. Hanesian (1976). Significado y aprendizaje significativo. Psicología educativa: Un punto de vista cognoscitivo, 1(2), 53-106. https://cmapspublic2.ihmc.us/rid=1J3D72HXW-2CBD02Q-PW5/aprendizaje%20Ausbel.pdf

Azmay, N.; R. Rosli; S. Maat; M. Mahmud (2023). Educational Research Trends on Statistical Reasoning and Statistical Thinking: A Systematic Literature Review. International Journal of Academic Research in Progressive Education and Development, 12(2), 586-600. https://ijarped.com/index.php/journal/article/view/1198

Beaulac, G.; T. Kenyon (2014). Critical Thinking Education and Debiasing (AILACT Essay Prize Winner 2013). Informal Logic, 34(4), 341-363. https://doi.org/10.22329/il.v34i4.4203

Ben-Zvi, D.; J. Garfield, J. (2004). Statistical Literacy, Reasoning and Thinking: Goals, Definitions and Challenges. En Ben-Zvi, D.; J. Garfield (eds.). The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Kluwer Academic Publishers, 3-15. https://link.springer.com/chapter/10.1007/1-4020-2278-6_1

Biggs, J.; K. Collis (1982). Evaluating the Quality of Learning: The SOLO Taxonomy. USA: Academic Press.

Biggs, J.; K. Collis (1989). Towards a Model of School-Based Curriculum Development and Assessment Using the SOLO Taxonomy. Australian Journal of Education, 33(2). 151-163. https://doi.org/10.1177/168781408903300205

Burrill, G. (2020). Statistical Literacy and Quantitative Reasoning: Rethinking the Curriculum. New Skills in the Changing World of Statistics Education: Proceedings of the Roundtable Conference of the International Association for Statistical Education (IASE), Held online. http://iase-web.org/documents/papers/rt2020/IASE2020 Roundtable 19_BURRILL.pdf?1610923749

Busom, I.; C. López-Mayán (2015). Student Preconceptions and Learning Economic Reasoning. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2704371

Byrne, R. (1989). Suppressing Valid Inferences with Conditionals. Cognition, 31(1), 61-83. https://www.researchgate.net/publication/20449155_Suppressing_Valid_Inferences_With_Conditionals

Chan, S.; Z. Ismail (2014). Developing Statistical Reasoning Assessment Instrument for High School Students in Descriptive Statistics. Procedia-Social and Behavioral Sciences, (116), 4338-4343. https://doi.org/10.1016/j.sbspro.2014.01.943

Chan, S.; Z. Ismail; B. Sumintono (2015). The Impact of Statistical Reasoning Learning Environment: A Rasch Analysis. Advanced Science Letters, 21(5), 1211-1215. https://www.researchgate.net/publication/283470216_The_Impact_of_Statistical_Reasoning_Learning_Environment_A_Rasch_Analysis

Chan, S.; Z. Ismail; B. Sumintono (2016). A Framework for Assessing High School Students' Statistical Reasoning. PloS one, 11(11), e0163846. https://doi.org/10.1371/journal.pone.0163846

Chance, B.; J. Garfield; R. delMas (2000). Developing Simulation Activities to Improve Students' Statistical Reasoning. Journal of Statistics Education, 7(3). https://www.researchgate.net/publication/283470216_The_Impact_of_Statistical_Reasoning_Learning_Environment_A_Rasch_Analysis

Cheng, P.; K. Holyoak; R. Nisbett; L. Oliver (1986). Pragmatic versus Syntactic Approaches to Training Deductive Reasoning. Cognitive Psychology, 18(3), 293-328. https://doi.org/10.1016/0010-0285(86)90002-2

delMas, R. (2002). Statistical Literacy, Reasoning, and Thinking: A Commentary. Journal of Statistics Education, 10(2). http://dx.doi.org/10.1080/10691898.2002.11910679

delMas, R. (2004). A Comparison of Mathematical and Statistical Reasoning. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Dordrecht: Springer-Kluwer Academic Publishers, 79-95. https://link.springer.com/chapter/10.1007/1-4020-2278-6_4

Rahmatina, D.; T. Nusantara; N. Parta; H. Susanto (2022). Statistical Reasoning Process of Students in Decision Making Using Commognitive Framework. Acta Scientiae, 24(3), 63-88. https://doi.org/10.17648/acta.scientiae.6603

Duarte, J.; S. Cazares (2014). Comprensión y razonamiento de profesores de Matemáticas de bachillerato sobre conceptos estadísticos básicos. Perfiles Educativos, 36(146), 14-29. https://doi.org/10.22201/iisue.24486167e.2014.146.46024

Engelmann, K.; B. Neuhaus; F. Fischer (2016). Fostering Scientific Reasoning in Education–Meta-Analytic Evidence from Intervention Studies. Educational Research and Evaluation, 22(5-6), 333-349. https://doi.org/10.1080/13803611.2016.1240089

Evans, J.; J. Barston; P. Pollard (1983). On the Conflict between Logic and Belief in Syllogistic Reasoning. Memory & Cognition, 11(3), 295-306. https://doi.org/10.3758/bf03196976

Evans, J. (1993). The Mental Model Theory of Conditional Reasoning: Critical Appraisal and Revision. Cognition, 48(1), 1-20. https://doi.org/10.1016/0010-0277(93)90056-2

Evans, M. (2019). The Measurement of Statistical Evidence as the Basis for Statistical Reasoning. Proceedings, 46(1), 7. https://doi.org/10.3390/ecea-5-06682

Friedman, H. (2017). Cognitive Biases that Interfere with Critical Thinking and Scientific Reasoning: A Course Module. Social Science Research Network, 10. https://www.academia.edu/32667965/Cognitive_Biases_that_Interfere_with_Critical_Thinking_and_Scientific_Reasoning_A_Course_Module

Friedman, O.; A. Leslie (2004). Mechanisms of Belief-Desire Reasoning: Inhibition and Bias. Psychological Science, 15(8), 547-552. https://doi.org/10.1111/j.0956-7976.2004.00717.x

Fugelsang, J.; K. Dunbar (2005). Brain-Based Mechanisms Underlying Complex Causal Thinking. Neuropsychologia, 43(8), 1204-1213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012

Gal, I.; L. Ginsburg; C. Schau (1997). Monitoring Attitudes and Beliefs in Statistics Education. The Assessment Challenge in Statistics Education, 12, 37-51. https://www.researchgate.net/profile/Iddo-Gal/publication/333402737_Gal_Iddo_Garfield_Joan_1997_book_all_19_chapters_The_assessment_challenge_in_statistics_education/links/5cebeb4c299bf109da7330f4/Gal-Iddo-Garfield-Joan-1997-book-all-19-chapters-T

Galotti, K. (1989). Approaches to Studying Formal and Everyday Reasoning. Psychological Bulletin, 105(3), 331–351. https://psycnet.apa.org/doi/10.1037/0033-2909.105.3.331

Garfield, J. (1995). How Students Learn Statistics. International Statistical Review/Revue Internationale de Statistique, 63(1), 25-34. https://iase-web.org/documents/intstatreview/95.Garfield.pdf

Garfield, J.; I. Gal (1999). Teaching and Assessing Statistical Reasoning. Developing Mathematical Reasoning in Grades K12, 207-219. https://www.researchgate.net/publication/247700710_Teaching_and_assessing_statistical_reasoning

Garfield, J.; B. Chance (2000). Assessment in Statistics Education: Issues and Challenges. Mathematical Thinking and Learning, 2(1-2), 99-125. https://doi.org/10.1207/S15327833MTL0202_5

Garfield, J. (2003). Assessing Statistical Reasoning. Statistics Education Research Journal, 2(1), 22-38. https://iase-web.org/ojs/SERJ/article/view/557/420

Garfield, J.; D. Ben-Zvi (2007). How Students Learn Statistics Revisited: A Current Review of Research on Teaching and Learning Statistics. International Statistical Review, 75(3), 372-396. https://doi.org/10.1111/j.1751-5823.2007.00029.x

Gigerenzer, G.; T. Reiger (1996). How do We Tell an Association from a Rule? A Response to Sloman. Psychological Bulletin, 119(1), 23–26. https://pure.mpg.de/rest/items/item_2547830_4/component/file_2561651/content

Goel, V.; C. Buchel; C. Frith; R. Dolan (2000). Dissociation of Mechanisms Underlying Syllogistic Reasoning. Neuroimage, 12(5), 504-514. https://doi.org/10.1006/nimg.2000.0636

Gómez-Blancarte, A.; R. Chávez (2022). The Intersection of Statistical Literacy, Reasoning, and Thinking. 11th International Conference on Teaching Statistics (ICOTS11). Bridging the Gap: Empowering & Educating Today’s Learners in Statistics. http://iase-web.org/icots/11/proceedings/pdfs/ICOTS11_262_CHVEZAGU.pdf?1669865545

Griggs, R.; J. Cox (1982). The Elusive Thematic?Materials Effect in Wason's Selection Task. British Journal of Psychology, 73(3), 407-420. https://doi.org/10.1111/j.2044-8295.1982.tb01823.x

Hadar, N.; L. Henkin (1978). Children's Conditional Reasoning Part II: Towards a Reliable Test of Conditional Reasoning Ability. Educational Studies in Mathematics, 97-114. https://doi.org/10.1007/BF00352195

Horton, N. (2013). I Hear, I Forget. I Do, I Understand: A Modified Moore-Method Mathematical Statistics Course. The American Statistician, 67(4), 219-228. https://doi.org/10.1080/00031305.2013.849207

Husereau, T.; D. Cousineau; S. Zang; R. Gibeau (2024). A Compendium of Common Heuristics, Misconceptions, and Biased Reasoning Used in Statistical Thinking. The Quantitative Methods for Psychology, 20(1), 57-75. https://www.tqmp.org/RegularArticles/vol20-1/p057/p057.pdf

Jansson, L. (1978). A Comparison of Two Approaches to the Assessment of Conditional Reasoning Abilities. Journal for Research in Mathematics Education, 9(3), 175-188. https://doi.org/10.2307/748996

Johnny, J.; M. Abu; A. Abdullah; N. Atan; M. Mokhtar (2015). Reasoning Skills among Students: A Meta-analysis. 2nd International Education Postgraduate Seminar 2015 (IEPS 2015) https://www.researchgate.net/publication/318205303_Reasoning_Skills_among_Students_a_Meta-Analysis

Johnson-Laird, P.; P. Legrenzi; M. Sonio (1972). Reasoning and a Sense of Reality. British Journal of Psychology, 63(3), 395–400. https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/j.2044-8295.1972.tb01287.x

Johnson-Laird, P. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard University Press, 61(4). https://doi.org/10.2307/414498

Jones, G.; C. Thornton; C. Langrall; E. Mooney; B. Perry; I. Putt (2000). A Framework for Characterizing Children's Statistical Thinking. Mathematical Thinking and Learning, 2(4), 269-307. https://doi.org/10.1207/S15327833MTL0204_3

Jones, G.; C. Langrall; C. Thornton; E. Mooney; A. Wares; M. Jones; S. Nisbet (2001). Using Students' Statistical Thinking to Inform Instruction. The Journal of Mathematical Behavior, 20(1), 109-144. https://doi.org/10.1016/S0732-3123(01)00064-5

Juárez, J.; S. Inzunsa (2014). Comprensión y razonamiento de profesores de Matemáticas de bachillerato sobre conceptos estadísticos básicos. Perfiles Educativos, 36(146), 14-29. https://doi.org/10.22201/iisue.24486167e.2014.146.46024

Kinnear, V. (2013). Young Children's Statistical Reasoning: A Tale of Two Contexts. Doctoral Dissertation. AUS: Queensland University of Technology. https://eprints.qut.edu.au/63496/1/Virginia_KINNEAR_Thesis.pdf

Klauer, K.; J. Musch, J; B. Naumer (2000). On Belief Bias in Syllogistic Reasoning. Psychological Review, 107(4), 852. https://psycnet.apa.org/doi/10.1037/0033-295X.107.4.852

Kuhn, D. (1977). Conditional Reasoning in Children. Developmental Psychology, 13(4), 342. https://psycnet.apa.org/doi/10.1037/0012-1649.13.4.342

Li, K.; M. Goos (2013). Evaluating Students’ Correlation Graphing Capability Using SOLO Taxonomy. In 59th ISI World Statistics Conference (WSC). https://www.researchgate.net/publication/305984250_Evaluating_Students'_Correlation_Graphing_Capability_Using_SOLO_Taxonomy

Lovett, M. (2001). A Collaborative Convergence on Studying Reasoning Processes: A Case Study in Statistics. Cognition and Instruction: Twenty-five years of progress, 347-384.

Markovits, H.; G. Nantel (1989). The Belief-Bias Effect in the Production and Evaluation of Logical Conclusions. Memory & Cognition, 17(1), 11-17. https://link.springer.com/article/10.3758/BF03199552

Márquez, R. (2012). El desarrollo del pensamiento matemático y la actividad docente. México: Gedisa.

Mooney, E. (2002). A Framework for Characterizing Middle School Students' Statistical Thinking. Mathematical Thinking and Learning, 4(1), 23-63. http://dx.doi.org/10.1207/S15327833MTL0204_3

Nicholson, J.; J. Ridgway, J.; S. McCusker (2006). Reasoning with Data–Time for a Rethink? Teaching Statistics, 28(1), 2-9. http://dx.doi.org/10.1111/j.1467-9639.2006.0228a.x

Ningsih, Y.; R. Rohana (2020). Students' Statistical Reasoning in Statistics Method Course. Online Submission, 14(1), 81-90. https://www.researchgate.net/publication/338993534_STUDENTS'_STATISTICAL_REASONING_IN_STATISTICS_METHOD_COURSE

Nolan, C.; E. Brandon (1984). Conditional Reasoning in Jamaica. Conference on Thinking, Harvard, Boston Mass. https://uwispace.sta.uwi.edu/server/api/core/bitstreams/e1b4b819-98a2-4db7-becf-9dbbe7f000d9/content

Nor, N.; N. Idris (2010). Assessing Students’ Informal Inferential Reasoning Using SOLO Taxonomy Based Framework. Procedia-Social and Behavioral Sciences, 2(2), 4805-4809. https://www.researchgate.net/publication/248607054_Assessing_Students'_Informal_Inferential_Reasoning_using_SOLO_Taxonomy_based_Framework

Oaksford, M.; N. Chater (1994). A Rational Analysis of the Selection Task as Optimal Data Selection. Psychological Review, 101(4), 608-631. https://pages.ucsd.edu/~cmckenzie/OaksfordChaterPsychReview1994.pdf

Qin, Y.; M. Sohn; J. Anderson; V. Stenger; K. Fissell; A. Goode; C. Carter (2003). Predicting the Practice Effects on the Blood Oxygenation Level-Dependent (BOLD) Function of fMRI in a Symbolic Manipulation Task. Proceedings of the National Academy of Sciences, 100(8), 4951-4956. https://pmc.ncbi.nlm.nih.gov/articles/PMC153661/pdf/pq0803004951.pdf

Rahmatina, D.; T. Nusantara; N. Parta; H. Susanto (2022). Statistical Reasoning Process of Students in Decision Making Using Commognitive Framework. Acta Scientiae, 24(3), 63-88. https://doi.org/10.17648/acta.scientiae.6603

Reading, C. (2002). Profile for Statistical Understanding. In Proceedings of the Sixth International Conference on Teaching Statistics, Cape Town, South Africa. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e88632259a4988a581bf8abe3d7a58185a716b2

Roberts, D.; J. Saxe (1982). Validity of a Statistics Attitude Survey: A follow-up Study. Educational and Psychological Measurement, 42(3), 907-912. https://doi.org/10.1177/001316448204200326

SEP (2017). Aprendizajes claves para la educación integral. México: SEP. https://www.sep.gob.mx/work/models/sep1/Resource/10933/1/images/Aprendizajes_clave_para_la_educacion_integral.pdf

Sloman, S. (1996). The Empirical Case for Two Systems of Reasoning. Psychological Bulletin, 119(1), 3–22. https://psycnet.apa.org/doi/10.1037/0033-2909.119.1.3

Stacey, K. (2006). What Is Mathematical Thinking and why Is It Important. https://www.criced.tsukuba.ac.jp/math/apec/apec2007/paper_pdf/Kaye%20Stacey.pdf

Stein, E. (1996). Without Good Reason. England: Clarendon Press. https://doi.org/10.1017/S0031819100057193

Susilawati, W.; R. Abdullah (2020). Statistical Reasoning through Metacognitive Brain-Based Learning. Journal Analisa, 6(1), 40-46. https://journal.uinsgd.ac.id/index.php/analisa/article/view/8158

Sutarso, T. (1992). Some Variables in Relation to Students' Anxiety in Learning Statistics. https://files.eric.ed.gov/fulltext/ED353334.pdf

Tempelaar, D. (2004). Statistical Reasoning Assessment: An Analysis of the SRA Instrument. https://www.rossmanchance.com/artist/proceedings/tempelaar.pdf

Tversky, A.; D. Kahneman (1983). Extensional versus Intentional Reasoning: The conjunction Fallacy in Probability Judgment. Psychological Review, 90(4), 293–315. https://psycnet.apa.org/doi/10.1037/0033-295X.90.4.293

Vosniadou, S.; X. Vamvakoussi; I. Skopeliti (2008). International Handbook of Research on Conceptual Change. USA: Routledge.

Wang, W.; X. Wang; G. Chen (2009). Survey and Analysis of the Statistical Reasoning among High School Students in China and Dutch. Journal of Mathematics Education, 2(1), 15-26. https://doi.org/10.52041/serj.v21i1.67

Wason, P. (1968). Reasoning about a Rule. Quarterly Journal of Experimental Psychology, 20(3), 273-281. https://doi.org/10.1080/14640746808400161

Watson, J.; K. Collis; R. Callingham; J. Moritz (1995). A Model for Assessing Higher Order Thinking in Statistics. Educational Research and Evaluation, 1(3), 247-275. https://www.researchgate.net/publication/248914097_A_Model_for_Assessing_Higher_Order_Thinking_in_Statistics

Watson, J.; J. Moritz (1998). The Beginning of Statistical Inference: Comparing Two Data Sets. Educational Studies in Mathematics, 37(2), 145-168. https://doi.org/10.1023/A:1003594832397

Yazmurotovna, K. (2024). Improving the Logical Thinking System of Primary School Pupils. International Journal of Artificial Intelligence, 4(03), 673-674. https://www.academicpublishers.org/journals/index.php/ijai/article/view/764

Ziegler, L. (2014). Reconceptualizing Statistical Literacy: Developing an Assessment for the Modern Introductory Statistics Course. University Digital Conservancy, https://hdl.handle.net/11299/165153

Publicado

2025-02-27