Statistical reasoning, conditional reasoning, and prior knowledge in statistics, assessment and covariation

Authors

  • Juan Gerardo Martínez-Borrayo Universidad de Guadalajara https://orcid.org/0009-0002-3573-3039
  • Luis Alfredo Mayoral Gutiérrez Universidad de Gudalajara

DOI:

https://doi.org/10.32870/dse.v0i32.1597

Abstract

The teaching of mathematics teaching should encourage logical reasoning, especially in statistics, where concepts such as statistical thinking and reasoning stand out. Even though the definition by Garfield and Chance (2000) is the most accepted, there are still various definitions of statistical reasoning, with no clear consensus on its meaning and assessment. The aim of this study was to explore the relationship and assessment of this concept together with conditional reasoning evaluated with the well-known task by Watson (1968), in its abstract and concrete version, controlling also prior knowledge in statistics. The research had a quasi-experimental design with quantitative measurements for the three variables of interest: statistical reasoning, prior knowledge in statistics and conditional reasoning. The performances were evaluated based on the SOLO taxonomy by Biggs and Collins (1982, 1989). The results revealed a low performance in the three variables of interest. A positive correlation was found between abstract and intermediate reasoning, as well as a negative correlation between knowledge in statistics and abstract reasoning.

Downloads

Download data is not yet available.

Author Biographies

Juan Gerardo Martínez-Borrayo, Universidad de Guadalajara

Doctor en Neurociencias. Líneas de Investigación: procesos cognoscitivos y de aprendizaje; neuroeducación. Profesor-investigador, Departamento de Neurociencias, Universidad de Guadalajara. México.

Luis Alfredo Mayoral Gutiérrez, Universidad de Gudalajara

Doctor en Educación. Líneas de Investigación: procesos cognoscitivos y de aprendizaje. Profesor-investigador, Departamento de Estudios en Educación, Universidad de Guadalajara. México.

References

Adolphs, R.; D. Tranel; A. Bechara; H. Damasio; A. Damasio (1996). Neuropsychological Approaches to Reasoning and Decision-Making. In Neurobiology of Decision-Making. Germany: Springer-Berlin-Heidelberg, 157-179.

Al-Labadi, L.; Z. Baskurt; M. Evans (2018). Statistical Reasoning: Choosing and Checking the Ingredients, Inferences Based on a Measure of Statistical Evidence with some Applications. Entropy, 20(4), 289. https://www.mdpi.com/1099-4300/20/4/289

Ausubel, D.; J. Novak; H. Hanesian (1976). Significado y aprendizaje significativo. Psicología educativa: Un punto de vista cognoscitivo, 1(2), 53-106. https://cmapspublic2.ihmc.us/rid=1J3D72HXW-2CBD02Q-PW5/aprendizaje%20Ausbel.pdf

Azmay, N.; R. Rosli; S. Maat; M. Mahmud (2023). Educational Research Trends on Statistical Reasoning and Statistical Thinking: A Systematic Literature Review. International Journal of Academic Research in Progressive Education and Development, 12(2), 586-600. https://ijarped.com/index.php/journal/article/view/1198

Beaulac, G.; T. Kenyon (2014). Critical Thinking Education and Debiasing (AILACT Essay Prize Winner 2013). Informal Logic, 34(4), 341-363. https://doi.org/10.22329/il.v34i4.4203

Ben-Zvi, D.; J. Garfield, J. (2004). Statistical Literacy, Reasoning and Thinking: Goals, Definitions and Challenges. En Ben-Zvi, D.; J. Garfield (eds.). The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Kluwer Academic Publishers, 3-15. https://link.springer.com/chapter/10.1007/1-4020-2278-6_1

Biggs, J.; K. Collis (1982). Evaluating the Quality of Learning: The SOLO Taxonomy. USA: Academic Press.

Biggs, J.; K. Collis (1989). Towards a Model of School-Based Curriculum Development and Assessment Using the SOLO Taxonomy. Australian Journal of Education, 33(2). 151-163. https://doi.org/10.1177/168781408903300205

Burrill, G. (2020). Statistical Literacy and Quantitative Reasoning: Rethinking the Curriculum. New Skills in the Changing World of Statistics Education: Proceedings of the Roundtable Conference of the International Association for Statistical Education (IASE), Held online. http://iase-web.org/documents/papers/rt2020/IASE2020 Roundtable 19_BURRILL.pdf?1610923749

Busom, I.; C. López-Mayán (2015). Student Preconceptions and Learning Economic Reasoning. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2704371

Byrne, R. (1989). Suppressing Valid Inferences with Conditionals. Cognition, 31(1), 61-83. https://www.researchgate.net/publication/20449155_Suppressing_Valid_Inferences_With_Conditionals

Chan, S.; Z. Ismail (2014). Developing Statistical Reasoning Assessment Instrument for High School Students in Descriptive Statistics. Procedia-Social and Behavioral Sciences, (116), 4338-4343. https://doi.org/10.1016/j.sbspro.2014.01.943

Chan, S.; Z. Ismail; B. Sumintono (2015). The Impact of Statistical Reasoning Learning Environment: A Rasch Analysis. Advanced Science Letters, 21(5), 1211-1215. https://www.researchgate.net/publication/283470216_The_Impact_of_Statistical_Reasoning_Learning_Environment_A_Rasch_Analysis

Chan, S.; Z. Ismail; B. Sumintono (2016). A Framework for Assessing High School Students' Statistical Reasoning. PloS one, 11(11), e0163846. https://doi.org/10.1371/journal.pone.0163846

Chance, B.; J. Garfield; R. delMas (2000). Developing Simulation Activities to Improve Students' Statistical Reasoning. Journal of Statistics Education, 7(3). https://www.researchgate.net/publication/283470216_The_Impact_of_Statistical_Reasoning_Learning_Environment_A_Rasch_Analysis

Cheng, P.; K. Holyoak; R. Nisbett; L. Oliver (1986). Pragmatic versus Syntactic Approaches to Training Deductive Reasoning. Cognitive Psychology, 18(3), 293-328. https://doi.org/10.1016/0010-0285(86)90002-2

delMas, R. (2002). Statistical Literacy, Reasoning, and Thinking: A Commentary. Journal of Statistics Education, 10(2). http://dx.doi.org/10.1080/10691898.2002.11910679

delMas, R. (2004). A Comparison of Mathematical and Statistical Reasoning. In The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Dordrecht: Springer-Kluwer Academic Publishers, 79-95. https://link.springer.com/chapter/10.1007/1-4020-2278-6_4

Rahmatina, D.; T. Nusantara; N. Parta; H. Susanto (2022). Statistical Reasoning Process of Students in Decision Making Using Commognitive Framework. Acta Scientiae, 24(3), 63-88. https://doi.org/10.17648/acta.scientiae.6603

Duarte, J.; S. Cazares (2014). Comprensión y razonamiento de profesores de Matemáticas de bachillerato sobre conceptos estadísticos básicos. Perfiles Educativos, 36(146), 14-29. https://doi.org/10.22201/iisue.24486167e.2014.146.46024

Engelmann, K.; B. Neuhaus; F. Fischer (2016). Fostering Scientific Reasoning in Education–Meta-Analytic Evidence from Intervention Studies. Educational Research and Evaluation, 22(5-6), 333-349. https://doi.org/10.1080/13803611.2016.1240089

Evans, J.; J. Barston; P. Pollard (1983). On the Conflict between Logic and Belief in Syllogistic Reasoning. Memory & Cognition, 11(3), 295-306. https://doi.org/10.3758/bf03196976

Evans, J. (1993). The Mental Model Theory of Conditional Reasoning: Critical Appraisal and Revision. Cognition, 48(1), 1-20. https://doi.org/10.1016/0010-0277(93)90056-2

Evans, M. (2019). The Measurement of Statistical Evidence as the Basis for Statistical Reasoning. Proceedings, 46(1), 7. https://doi.org/10.3390/ecea-5-06682

Friedman, H. (2017). Cognitive Biases that Interfere with Critical Thinking and Scientific Reasoning: A Course Module. Social Science Research Network, 10. https://www.academia.edu/32667965/Cognitive_Biases_that_Interfere_with_Critical_Thinking_and_Scientific_Reasoning_A_Course_Module

Friedman, O.; A. Leslie (2004). Mechanisms of Belief-Desire Reasoning: Inhibition and Bias. Psychological Science, 15(8), 547-552. https://doi.org/10.1111/j.0956-7976.2004.00717.x

Fugelsang, J.; K. Dunbar (2005). Brain-Based Mechanisms Underlying Complex Causal Thinking. Neuropsychologia, 43(8), 1204-1213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012

Gal, I.; L. Ginsburg; C. Schau (1997). Monitoring Attitudes and Beliefs in Statistics Education. The Assessment Challenge in Statistics Education, 12, 37-51. https://www.researchgate.net/profile/Iddo-Gal/publication/333402737_Gal_Iddo_Garfield_Joan_1997_book_all_19_chapters_The_assessment_challenge_in_statistics_education/links/5cebeb4c299bf109da7330f4/Gal-Iddo-Garfield-Joan-1997-book-all-19-chapters-T

Galotti, K. (1989). Approaches to Studying Formal and Everyday Reasoning. Psychological Bulletin, 105(3), 331–351. https://psycnet.apa.org/doi/10.1037/0033-2909.105.3.331

Garfield, J. (1995). How Students Learn Statistics. International Statistical Review/Revue Internationale de Statistique, 63(1), 25-34. https://iase-web.org/documents/intstatreview/95.Garfield.pdf

Garfield, J.; I. Gal (1999). Teaching and Assessing Statistical Reasoning. Developing Mathematical Reasoning in Grades K12, 207-219. https://www.researchgate.net/publication/247700710_Teaching_and_assessing_statistical_reasoning

Garfield, J.; B. Chance (2000). Assessment in Statistics Education: Issues and Challenges. Mathematical Thinking and Learning, 2(1-2), 99-125. https://doi.org/10.1207/S15327833MTL0202_5

Garfield, J. (2003). Assessing Statistical Reasoning. Statistics Education Research Journal, 2(1), 22-38. https://iase-web.org/ojs/SERJ/article/view/557/420

Garfield, J.; D. Ben-Zvi (2007). How Students Learn Statistics Revisited: A Current Review of Research on Teaching and Learning Statistics. International Statistical Review, 75(3), 372-396. https://doi.org/10.1111/j.1751-5823.2007.00029.x

Gigerenzer, G.; T. Reiger (1996). How do We Tell an Association from a Rule? A Response to Sloman. Psychological Bulletin, 119(1), 23–26. https://pure.mpg.de/rest/items/item_2547830_4/component/file_2561651/content

Goel, V.; C. Buchel; C. Frith; R. Dolan (2000). Dissociation of Mechanisms Underlying Syllogistic Reasoning. Neuroimage, 12(5), 504-514. https://doi.org/10.1006/nimg.2000.0636

Gómez-Blancarte, A.; R. Chávez (2022). The Intersection of Statistical Literacy, Reasoning, and Thinking. 11th International Conference on Teaching Statistics (ICOTS11). Bridging the Gap: Empowering & Educating Today’s Learners in Statistics. http://iase-web.org/icots/11/proceedings/pdfs/ICOTS11_262_CHVEZAGU.pdf?1669865545

Griggs, R.; J. Cox (1982). The Elusive Thematic?Materials Effect in Wason's Selection Task. British Journal of Psychology, 73(3), 407-420. https://doi.org/10.1111/j.2044-8295.1982.tb01823.x

Hadar, N.; L. Henkin (1978). Children's Conditional Reasoning Part II: Towards a Reliable Test of Conditional Reasoning Ability. Educational Studies in Mathematics, 97-114. https://doi.org/10.1007/BF00352195

Horton, N. (2013). I Hear, I Forget. I Do, I Understand: A Modified Moore-Method Mathematical Statistics Course. The American Statistician, 67(4), 219-228. https://doi.org/10.1080/00031305.2013.849207

Husereau, T.; D. Cousineau; S. Zang; R. Gibeau (2024). A Compendium of Common Heuristics, Misconceptions, and Biased Reasoning Used in Statistical Thinking. The Quantitative Methods for Psychology, 20(1), 57-75. https://www.tqmp.org/RegularArticles/vol20-1/p057/p057.pdf

Jansson, L. (1978). A Comparison of Two Approaches to the Assessment of Conditional Reasoning Abilities. Journal for Research in Mathematics Education, 9(3), 175-188. https://doi.org/10.2307/748996

Johnny, J.; M. Abu; A. Abdullah; N. Atan; M. Mokhtar (2015). Reasoning Skills among Students: A Meta-analysis. 2nd International Education Postgraduate Seminar 2015 (IEPS 2015) https://www.researchgate.net/publication/318205303_Reasoning_Skills_among_Students_a_Meta-Analysis

Johnson-Laird, P.; P. Legrenzi; M. Sonio (1972). Reasoning and a Sense of Reality. British Journal of Psychology, 63(3), 395–400. https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/j.2044-8295.1972.tb01287.x

Johnson-Laird, P. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard University Press, 61(4). https://doi.org/10.2307/414498

Jones, G.; C. Thornton; C. Langrall; E. Mooney; B. Perry; I. Putt (2000). A Framework for Characterizing Children's Statistical Thinking. Mathematical Thinking and Learning, 2(4), 269-307. https://doi.org/10.1207/S15327833MTL0204_3

Jones, G.; C. Langrall; C. Thornton; E. Mooney; A. Wares; M. Jones; S. Nisbet (2001). Using Students' Statistical Thinking to Inform Instruction. The Journal of Mathematical Behavior, 20(1), 109-144. https://doi.org/10.1016/S0732-3123(01)00064-5

Juárez, J.; S. Inzunsa (2014). Comprensión y razonamiento de profesores de Matemáticas de bachillerato sobre conceptos estadísticos básicos. Perfiles Educativos, 36(146), 14-29. https://doi.org/10.22201/iisue.24486167e.2014.146.46024

Kinnear, V. (2013). Young Children's Statistical Reasoning: A Tale of Two Contexts. Doctoral Dissertation. AUS: Queensland University of Technology. https://eprints.qut.edu.au/63496/1/Virginia_KINNEAR_Thesis.pdf

Klauer, K.; J. Musch, J; B. Naumer (2000). On Belief Bias in Syllogistic Reasoning. Psychological Review, 107(4), 852. https://psycnet.apa.org/doi/10.1037/0033-295X.107.4.852

Kuhn, D. (1977). Conditional Reasoning in Children. Developmental Psychology, 13(4), 342. https://psycnet.apa.org/doi/10.1037/0012-1649.13.4.342

Li, K.; M. Goos (2013). Evaluating Students’ Correlation Graphing Capability Using SOLO Taxonomy. In 59th ISI World Statistics Conference (WSC). https://www.researchgate.net/publication/305984250_Evaluating_Students'_Correlation_Graphing_Capability_Using_SOLO_Taxonomy

Lovett, M. (2001). A Collaborative Convergence on Studying Reasoning Processes: A Case Study in Statistics. Cognition and Instruction: Twenty-five years of progress, 347-384.

Markovits, H.; G. Nantel (1989). The Belief-Bias Effect in the Production and Evaluation of Logical Conclusions. Memory & Cognition, 17(1), 11-17. https://link.springer.com/article/10.3758/BF03199552

Márquez, R. (2012). El desarrollo del pensamiento matemático y la actividad docente. México: Gedisa.

Mooney, E. (2002). A Framework for Characterizing Middle School Students' Statistical Thinking. Mathematical Thinking and Learning, 4(1), 23-63. http://dx.doi.org/10.1207/S15327833MTL0204_3

Nicholson, J.; J. Ridgway, J.; S. McCusker (2006). Reasoning with Data–Time for a Rethink? Teaching Statistics, 28(1), 2-9. http://dx.doi.org/10.1111/j.1467-9639.2006.0228a.x

Ningsih, Y.; R. Rohana (2020). Students' Statistical Reasoning in Statistics Method Course. Online Submission, 14(1), 81-90. https://www.researchgate.net/publication/338993534_STUDENTS'_STATISTICAL_REASONING_IN_STATISTICS_METHOD_COURSE

Nolan, C.; E. Brandon (1984). Conditional Reasoning in Jamaica. Conference on Thinking, Harvard, Boston Mass. https://uwispace.sta.uwi.edu/server/api/core/bitstreams/e1b4b819-98a2-4db7-becf-9dbbe7f000d9/content

Nor, N.; N. Idris (2010). Assessing Students’ Informal Inferential Reasoning Using SOLO Taxonomy Based Framework. Procedia-Social and Behavioral Sciences, 2(2), 4805-4809. https://www.researchgate.net/publication/248607054_Assessing_Students'_Informal_Inferential_Reasoning_using_SOLO_Taxonomy_based_Framework

Oaksford, M.; N. Chater (1994). A Rational Analysis of the Selection Task as Optimal Data Selection. Psychological Review, 101(4), 608-631. https://pages.ucsd.edu/~cmckenzie/OaksfordChaterPsychReview1994.pdf

Qin, Y.; M. Sohn; J. Anderson; V. Stenger; K. Fissell; A. Goode; C. Carter (2003). Predicting the Practice Effects on the Blood Oxygenation Level-Dependent (BOLD) Function of fMRI in a Symbolic Manipulation Task. Proceedings of the National Academy of Sciences, 100(8), 4951-4956. https://pmc.ncbi.nlm.nih.gov/articles/PMC153661/pdf/pq0803004951.pdf

Rahmatina, D.; T. Nusantara; N. Parta; H. Susanto (2022). Statistical Reasoning Process of Students in Decision Making Using Commognitive Framework. Acta Scientiae, 24(3), 63-88. https://doi.org/10.17648/acta.scientiae.6603

Reading, C. (2002). Profile for Statistical Understanding. In Proceedings of the Sixth International Conference on Teaching Statistics, Cape Town, South Africa. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e88632259a4988a581bf8abe3d7a58185a716b2

Roberts, D.; J. Saxe (1982). Validity of a Statistics Attitude Survey: A follow-up Study. Educational and Psychological Measurement, 42(3), 907-912. https://doi.org/10.1177/001316448204200326

SEP (2017). Aprendizajes claves para la educación integral. México: SEP. https://www.sep.gob.mx/work/models/sep1/Resource/10933/1/images/Aprendizajes_clave_para_la_educacion_integral.pdf

Sloman, S. (1996). The Empirical Case for Two Systems of Reasoning. Psychological Bulletin, 119(1), 3–22. https://psycnet.apa.org/doi/10.1037/0033-2909.119.1.3

Stacey, K. (2006). What Is Mathematical Thinking and why Is It Important. https://www.criced.tsukuba.ac.jp/math/apec/apec2007/paper_pdf/Kaye%20Stacey.pdf

Stein, E. (1996). Without Good Reason. England: Clarendon Press. https://doi.org/10.1017/S0031819100057193

Susilawati, W.; R. Abdullah (2020). Statistical Reasoning through Metacognitive Brain-Based Learning. Journal Analisa, 6(1), 40-46. https://journal.uinsgd.ac.id/index.php/analisa/article/view/8158

Sutarso, T. (1992). Some Variables in Relation to Students' Anxiety in Learning Statistics. https://files.eric.ed.gov/fulltext/ED353334.pdf

Tempelaar, D. (2004). Statistical Reasoning Assessment: An Analysis of the SRA Instrument. https://www.rossmanchance.com/artist/proceedings/tempelaar.pdf

Tversky, A.; D. Kahneman (1983). Extensional versus Intentional Reasoning: The conjunction Fallacy in Probability Judgment. Psychological Review, 90(4), 293–315. https://psycnet.apa.org/doi/10.1037/0033-295X.90.4.293

Vosniadou, S.; X. Vamvakoussi; I. Skopeliti (2008). International Handbook of Research on Conceptual Change. USA: Routledge.

Wang, W.; X. Wang; G. Chen (2009). Survey and Analysis of the Statistical Reasoning among High School Students in China and Dutch. Journal of Mathematics Education, 2(1), 15-26. https://doi.org/10.52041/serj.v21i1.67

Wason, P. (1968). Reasoning about a Rule. Quarterly Journal of Experimental Psychology, 20(3), 273-281. https://doi.org/10.1080/14640746808400161

Watson, J.; K. Collis; R. Callingham; J. Moritz (1995). A Model for Assessing Higher Order Thinking in Statistics. Educational Research and Evaluation, 1(3), 247-275. https://www.researchgate.net/publication/248914097_A_Model_for_Assessing_Higher_Order_Thinking_in_Statistics

Watson, J.; J. Moritz (1998). The Beginning of Statistical Inference: Comparing Two Data Sets. Educational Studies in Mathematics, 37(2), 145-168. https://doi.org/10.1023/A:1003594832397

Yazmurotovna, K. (2024). Improving the Logical Thinking System of Primary School Pupils. International Journal of Artificial Intelligence, 4(03), 673-674. https://www.academicpublishers.org/journals/index.php/ijai/article/view/764

Ziegler, L. (2014). Reconceptualizing Statistical Literacy: Developing an Assessment for the Modern Introductory Statistics Course. University Digital Conservancy, https://hdl.handle.net/11299/165153

Published

2025-02-27