La universidad en la caja negra: disputas institucionales en torno a la inclusión y la gestión algorítmica
DOI:
https://doi.org/10.32870/dse.v0i34.1712Abstract
The incorporation of artificial intelligence (AI) and algorithmic management in higher education institutions aims to improve operational efficiency and data-driven decision-making. However, its implementation presents significant challenges in terms of university inclusion. Through a critical review of the literature, it examines how AI and algorithmic management affect decision-making processes, institutional legitimacy, and organizational disputes around inclusion, considering issues such as educational commodification and algorithmic opacity. It argues that the adoption of algorithmic tools is not based solely on technical criteria but is shaped by normative pressures and the pursuit of institutional legitimacy. These dynamics can perpetuate exclusionary practices when academic and personal trajectories of students are not considered. In this context, it is proposed that institutional governance can offer an alternative framework to challenge the configuration of the university as an “algorithmic black box,” promoting a more transparent and inclusion-oriented form of management.
Downloads
References
Acosta, S. (2014). Gobierno universitario y comportamiento institucional: La experiencia mexicana. Bordón. Revista de Pedagogía, 66(1). https://doi.org/10.13042/bordon.2014.66102
Acosta, O.; E. Buendía (2016). Perspectivas institucionales y educación superior desde miradas globales a espacios locales: El caso de México. Revista de la Educación Superior, 45(179), 9-23. https://doi.org/10.1016/j.resu.2016.04.007
Ainscow, M. (2020). Inclusion and equity in education: Making sense of global challenges. Prospects, 49(2-3), 123-134. https://doi.org/10.1007/s11125-020-09506-w
Al-Zahrani, A.; T. Alasmari (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities & Social Sciences Communications, 11, 912. https://doi.org/10.1057/s41599-024-03432-4
AspirEDU. (2025). Dropout Detective: Student retention and success tool. https://aspiredu.com/dropout-detective/
Becker, L.; B. Wurm; T. Hess (2023). Will algorithms replace managers? A systematic literature review on algorithmic management. Proceedings of the Forty-Fourth International Conference on Information Systems (ICIS), 3, 2121-2137. Hyderabad, India. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1057&context=icis2023
Brunner, J.; J. Labraña (2020). The transformation of higher education in Latin America: From elite access to massification and universalisation. The promise of higher education. Springer, 31-41. https://doi.org/10.1007/978-3-030-44263-7_3
Buendía, E. (2011). Análisis institucional y educación superior: Aportes teóricos y resultados empíricos. Perfiles Educativos, 33(134), 8-33. https://www.redalyc.org/articulo.oa?id=13221247002
Cai, Y.; N. Mountford (2022). Institutional logics analysis in higher education research. Studies in Higher Education, 47(8), 1627-1651. https://doi.org/10.1080/03075079.2021.1946032
Castro, D.; D. Rodríguez-Gómez; J. Gairín (2017). Exclusion factors in Latin American higher education: A preliminary analysis from university governing board perspective. Education and Urban Society, 49(2), 229-247. https://doi.org/10.1177/0013124516630599
Cruz, I.; B. Lugo; D. Cárdenas (2020). Aportaciones teóricas en el estudio del institucionalismo en las organizaciones. Gestión y Estrategia, 59(1), 37-54. https://doi.org/10.24275/uam/azc/dcsh/gye/2021n59/cruz
Deephouse, D.; M. Suchman (2008). Legitimacy in organizational institutionalism. In Greenwood, R.; C. Oliver; K. Sahlin; R. Suddaby (eds.). The SAGE handbook of organizational institutionalism. SAGE Publications, 49-77.
DiMaggio, P.; W. Powell (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organisational fields. American Sociological Review, 48(2), 147-160. https://doi.org/10.2307/2095101
Fiss, P. (2008). Institutions and corporate governance. In Greenwood, R.; C. Oliver; K. Sahlin; R. Suddaby (eds.). The SAGE handbook of organizational institutionalism. SAGE Publications, 389-410.
George, B.; O. Wooden (2023). Managing the strategic transformation of higher education through artificial intelligence. Administrative Sciences, 13(9), 196. https://doi.org/10.3390/admsci13090196
Jarrahi, M.; G. Newlands; M. Lee; C. Wolf; E. Kinder; W. Sutherland (2021). Algorithmic management in a work context. Big Data & Society, 8(2). https://doi.org/10.1177/20539517211020332
Lamers, L.; J. Meijerink; G. Rettagliata (2024). Blinded by “algo economicus”: Reflecting on the assumptions of algorithmic management research to move forward. Human Resource Management, 63(2), 413-426. https://doi.org/10.1002/hrm.22204
Leal, G.; S. Porras (2012). Adquisición de tecnologías de información e influencia institucional en grandes empresas en Iztapalapa. Nova Scientia, 5(9), 127. https://doi.org/10.21640/ns.v5i9.161
Lesjak, D.; S. Natek; F. Kohun (2021). Big data analytics in higher education. Issues in Information Systems, 22(4), 320-333. https://doi.org/10.48009/4_iis_2021_346-359
Mago, B.; N. Khan (2021). A proposed framework for big data analytics in higher education. International Journal of Advanced Computer Science and Applications (IJACSA), 12(7), 684-691. https://doi.org/10.14569/IJACSA.2021.0120779
Meyer, J.; B. Rowan (1977). Institutionalized organizations: Formal structure as myth and ceremony. American Journal of Sociology, 83(2), 340-363. http://www.jstor.org/stable/2778293
Moodle. (2025). Analítica de aprendizaje para Moodle. https://moodle.com/es/integraciones-con-moodle/learning-analytics-for-moodle/
Muñoz, G.; J. Delgado; J. Dávalos (2024). Inteligencia artificial y gobernanza en la gestión académica y administrativa de la educación superior. Revista Social Fronteriza, 4(6), e46508. https://doi.org/10.59814/resofro.2024.4(6)508
Nassoura, A. (2022). Applied artificial intelligence applications in higher education institutions: A systematic review. Webology, 19(3), 1168-1183. https://www.webology.org/abstract.php?id=2831
Nguyen, A.; L. Gardner; D. Sheridan (2020). Data analytics in higher education: An integrated view. Journal of Information Systems Education, 31(1), 61-71. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3949946
Noponen, N.; P. Feshchenko; T. Auvinen; V. Luoma-aho; P. Abrahamsson (2023). Taylorism on steroids or enabling autonomy? A systematic review of algorithmic management. Management Review Quarterly, 74(2), 1695-1721. https://doi.org/10.1007/s11301-023-00345-5
Othot. (2025). Case studies. https://www.othot.com/learn/case-studies
Peeters, T.; J. Paauwe; K. Van de Voorde (2021). People analytics effectiveness developing a framework. Journal of Organizational Effectiveness: People and Performance, 7(2), 203-219. https://www.emerald.com/insight/content/doi/10.1108/joepp-04-2020-0071/full/pdf?title=people-analytics-effectiveness-developing-a-framework
Pérez, A.; A. Rodríguez (2022). La universidad imperfecta. Una aproximación desde la diversidad social. Revista de la Educación Superior, 51(201), 73-86. https://doi.org/10.36857/resu.2022.201.2022
Prinsloo, P. (2017). Fleeing from Frankenstein’s monster and meeting Kafka on the way: Algorithmic decision-making in higher education. E-Learning and Digital Media, 14(3), 138-163. https://doi.org/10.1177/2042753017731355
Prinsloo, P.; S. Slade (2016). Student vulnerability, agency, and learning analytics: An exploration. Journal of Learning Analytics, 3(1), 159-182. http://dx.doi.org/10.18608/jla.2016.31.10
Rindova, V.; I. Williamson; A. Petkova; J. Sever (2005). Being good or being known: An empirical examination of the dimensions, antecedents, and consequences of organizational reputation. Academy of Management Journal, 48(6), 1033-1049. https://doi.org/10.5465/amj.2005.19573108
Scott, W. (2014). Institutions and organizations: Ideas, interests, and identities. SAGE Publications.
Suchman, M. (1995). Managing legitimacy: Strategic and institutional approaches. Academy of Management Review, 20(3), 571-610. https://doi.org/10.2307/258788
Thornton, P.; W. Ocasio (2008). Institutional logics. Greenwood, R.; C. Oliver; K. Sahlin; R. Suddaby (eds.). The SAGE handbook of organizational institutionalism. SAGE Publications, 99-129.
Webber, K.; H. Zheng (2024). Artificial intelligence and advanced data analytics: Implications for higher education. New Directions for Higher Education, 2024(207), 5-13. https://doi.org/10.1002/he.20508
Williamson, B. (2017). Who owns educational theory? Big data, algorithms, and the expert power of education data science. E-Learning and Digital Media, 14(3), 105-122. https://doi.org/10.1177/2042753017731238
Wong, B.; K. Li; S. Choi (2018). Trends in learning analytics practices: A review of higher education institutions. Interactive Technology and Smart Education, 15(2), 132-154. https://doi.org/10.1108/ITSE-12-2017-0065
Zawacki-Richter, O.; V. Marín; M. Bond; F. Gouverneur (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Universidad de Guadalajara

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once a manuscript is accepted for publication in the journal, its author(s) must sign a letter transferring the editorial rights to the University of Guadalajara for the editing, publication and dissemination of the paper. After being notified of its publication, the author(s) will be sent a letter of transfer of rights which must be signed and sent back to the journal’s editor.











